

MIT International Center for Air Transportation

4-D TRAJECTORY FRAMEWORK FOR WEATHER INFORMATION

LAURENCE VIGEANT-LANGLOIS LANGLOIS@MIT.EDU

R. JOHN HANSMAN, JR. RJHANS@MIT.EDU

DEPARTMENT OF AERONAUTICS AND ASTRONAUTICS
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Motivation

- Adverse Weather Significantly Impacts Flight Operations
 - Safety -- 22. 5% All US Accidents
 - Efficiency -- 17% / \$1.7B per year Avoidable Weather Delays (Source: FAA)

Thunderstorms & Microbursts

In-Flight Icing

Turbulence & Clear Air Turbulence

- Effervescence of Weather Information Technical Development
 - Datalink
- There is a Need for a Coherent Approach for the Presentation of Hazardous Weather Information to Pilots and Other ATM Decision-Makers

Human-Centered Approach Closed Loop Feedback Process

Sensors

Model

Dissemination

Displays

Operator

New Weather Datalink Products

ARNAV

Echo Flight

Bendix/King FAA FISDL

Avidyne

Vigyan

UPS - AirCell

Garmin

Human-Centered Approach Closed Loop Feedback Process

Sensors

Model

Dissemination

Displays

Operator

Pilots' Cognitive Tasks and Information Needs

- Pilots' Cognitive Tasks
 - ▲ Identify a planned flight trajectory
 - → Nominal
 - Alternative
 - ▲ Accept or reject a planned flight trajectory
 - → Go/no-go
 - Continue/deviate
 - → Fly to destination/alternate
 - ▲ Select resources for a flight trajectory (e.g., fuel)
 - Opt for legal fair-weather minimum or extra fuel
 - How much extra fuel?
 - ▲ Manage systems along a flight trajectory
 - → When to update weather information
 - → When to use ice protection systems, seat-belt signs, flight attendant warnings
- Pilot weather information needs focus on the spatial distribution of hazardous weather conditions along 4-D aircraft trajectories
 - Reactive
 - Tactical
 - ▲ Strategic

Temporal Regimes of Cognitive Processes

TEMPORAL REGIMES OF WEATHER REPRESENTATION

4-D Trajectory Framework

- Aircraft Trajectory Modeled as a 4-D Aircraft Hypertube
 - ▲ 3-D space + time
 - ▲ Specified variables: origin, destination, routing, ETD, ETE, cruising velocity
- Weather Field Modeled as Either:
 - A Spatially Distributed and Temporally Varying Multi-Attribute Field
 - ▲ 4D Gridded RUC-2 Data (20 km resolutions, 50 vertical levels)
 - A Hazardous Weather Hypervolume
 - Assumption: hazardous weather condition thresholds identifiable
- Interaction Modeled as the 4-D Intersection of Hypervolumes
- Key Issues
 - ▲ How to represent time?
 - ▲ How to represent uncertainty?

Illustration of 4-D Intersection Test (Quasi-Deterministic Regime)

Pilots' Perception of Forecast Accuracy

*Between Protected Aircraft

Hypertube and Hazardous

Weather Hypervolume

Traditional Forecast Verification Methodology for ΔT Hours

Sensitivity of 4-D Intersection to Estimated Time of Departure

Conclusions

- Limitations currently exist in the dissemination and representation of temporally varying weather information
 - Weather datalink capabilities are improving the dissemination potential to pilots
- These limitations impair the ability to provide weather forecasts that can be perceived accurate by users of aviation weather information
- The 4-D trajectory framework serves as a basis for investigating across the flight deck, ATC and AOC environments:
 - How to represent temporally varying information
 - How to represent uncertainty in the adverse weather avoidance problem

Continuing Work

- Advanced Visualization Techniques for 4-D Fields
- Trade-Offs in Representing Uncertainty in Quasi-Deterministic Regime
- Representation of Weather in Non-Deterministic Regime